Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses.

نویسندگان

  • Stephanie Jungmichel
  • Florian Rosenthal
  • Matthias Altmeyer
  • Jiri Lukas
  • Michael O Hottiger
  • Michael L Nielsen
چکیده

Poly(ADP-ribos)ylation (PARylation) is a reversible posttranslational modification found in higher eukaryotes. However, little is known about PARylation acceptor proteins. Here, we describe a sensitive proteomics approach based on high-accuracy quantitative mass spectrometry for the identification of PARylated proteins induced under different cellular stress conditions. While confirming the majority of known PARylated substrates, our screen identifies numerous additional PARylation targets. In vivo and in vitro validation of acceptor proteins confirms that our methodology targets covalent PARylation. Nuclear proteins encompassing nucleic acid binding properties are prominently PARylated upon genotoxic stress, consistent with the nuclear localization of ARTD1/PARP1 and ARTD2/PARP2. Distinct differences in proteins becoming PARylated upon various genotoxic insults are observed, exemplified by the PARylation of RNA-processing factors THRAP3 and TAF15 under oxidative stress. High-content imaging reveals that PARylation affects the nuclear relocalization of THRAP3 and TAF15, demonstrating the potential of our approach to uncover hitherto unappreciated processes being controlled by specific genotoxic-stress-induced PARylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribosyl)ation in plants.

Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) are the main enzymes responsible for the post-translational modification known as poly(ADP-ribosyl)ation. These enzymes play important roles in genotoxic stress tolerance and DNA repair, programmed cell death, transcription, and cell cycle control in animals. Similar impacts are being discovered in plants, as well...

متن کامل

Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes

Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable adva...

متن کامل

Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.

Poly(ADP-ribosyl)ation is a posttranslational modification of proteins, which is mainly catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) by using NAD(+) as substrate and is directly triggered by DNA strand breaks. Under mild genotoxic stress poly(ADP-ribose) (PAR) formation plays an important role in DNA repair whereas severe genotoxic stress and the ensuing overactivation of PARP-1 induce c...

متن کامل

Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress.

Poly(ADP-ribosyl)ation is a posttranslational protein modification in which ADP-ribose (ADP-Rib) units derived from NAD(+) are attached to proteins by poly(ADP-Rib) polymerase (PARP) enzymes. ADP-Rib groups are removed from these polymer chains by the enzyme poly(ADP-Rib) glycohydrolase (PARG). In animals, poly(ADP-ribosyl)ation is associated with DNA damage responses and programmed cell death....

متن کامل

Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

Poly(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2013